Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Turbulence Modeling via the Fractional Laplacian (1803.05286v1)

Published 14 Mar 2018 in physics.flu-dyn

Abstract: Herein, we derive the fractional Laplacian operator as a means to represent the mean friction force arising in a turbulent flow: $ \rho \frac{D\bar{\bf u}}{Dt} = -\nabla p + \mu_\alpha \nabla2\bar{\bf u} + \rho C_\alpha \iiint_{!-\infty}\infty \frac{ \bar{\bf u}{\scriptstyle(t,{\bf x}')} - \bar{\bf u}{\scriptstyle(t,{\bf x})} }{|{\bf x}'-{\bf x}|{\alpha+3}} \,d{\bf x}' $, where $\bar{\bf u}{\scriptstyle(t,{\bf x})}$ is the ensemble-averaged velocity field, $\mu_\alpha$ is an enhanced molecular viscosity, and $C_\alpha$ is a turbulent mixing coefficient (with units (length)$\alpha$/(time)). The derivation is grounded in Boltzmann kinetic theory, which presumes an equilibrium probability distribution $f_\alpha{eq}(t,{\bf x},{\bf u})$ of particle speeds. While historically $f_\alpha{eq}$ has been assumed to be the Maxwell-Boltzmann distribution, we show that any member of the family of L\'evy $\alpha$-stable distributions is a suitable alternative. If $\alpha=2$, then $f{eq}_\alpha$ is the Maxwell-Boltzmann distribution, with large particle speeds very unlikely, and the Navier-Stokes equations are recovered (with $\mu_\alpha = \mu$ and $C_\alpha = 0$). If $0 < \alpha < 2$, then $f{eq}_\alpha$ is a L\'evy $\alpha$-stable distribution, with "heavy tails" that permit large velocity fluctuations, as in turbulence. For shear turbulent flows, the choice of $\alpha = 1$ (Cauchy distribution for $f_\alpha{eq}$) leads to the logarithmic velocity profile known as the Law of the Wall. We also present examples of 1D Couette flow and 2D boundary layer flow, and we discuss turbulent transport within this kinetic theory framework. This work lays out a new framework for turbulence modeling that may lead to new fundamental understanding of turbulent flows.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.