Weighted Bayesian Bootstrap for Scalable Bayes (1803.04559v1)
Abstract: We develop a weighted Bayesian Bootstrap (WBB) for machine learning and statistics. WBB provides uncertainty quantification by sampling from a high dimensional posterior distribution. WBB is computationally fast and scalable using only off-theshelf optimization software such as TensorFlow. We provide regularity conditions which apply to a wide range of machine learning and statistical models. We illustrate our methodology in regularized regression, trend filtering and deep learning. Finally, we conclude with directions for future research.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.