Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Index pairing with Alexander-Spanier cocycles (1803.04443v2)

Published 12 Mar 2018 in math.KT and math.OA

Abstract: We give a uniform construction of the higher indices of elliptic operators associated to Alexander-Spanier cocycles of either parity in terms of a pairing a la Connes between the K-theory and the cyclic cohomology of the algebra of complete symbols of pseudodifferential operators, implemented by means of a relative form of the Chern character in cyclic homology. While the formula for the lowest index of an elliptic operator D on a closed manifold M (which coincides with its Fredholm index) reproduces the Atiyah-Singer index theorem, our formula for the highest index of D (associated to a volume cocycle) yields an extension to arbitrary manifolds of any dimension of the Helton-Howe formula for the trace of multicommutators of classical Toeplitz operators on odd-dimensional spheres. In fact, the totality of higher analytic indices for an elliptic operator D amount to a representation of the Connes-Chern character of the K-homology cycle determined by D in terms of expressions which extrapolate the Helton-Howe formula below the dimension of M.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.