Spectral statistics in spatially extended chaotic quantum many-body systems
Abstract: We study spectral statistics in spatially extended chaotic quantum many-body systems, using simple lattice Floquet models without time-reversal symmetry. Computing the spectral form factor $K(t)$ analytically and numerically, we show that it follows random matrix theory (RMT) at times longer than a many-body Thouless time, $t_{\rm Th}$. We obtain a striking dependence of $t_{\rm Th}$ on the spatial dimension $d$ and size of the system. For $d>1$, $t_{\rm Th}$ is finite in the thermodynamic limit and set by the inter-site coupling strength. By contrast, in one dimension $t_{\rm Th}$ diverges with system size, and for large systems there is a wide window in which spectral correlations are not of RMT form.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.