2000 character limit reached
Learning and analyzing vector encoding of symbolic representations (1803.03834v1)
Published 10 Mar 2018 in cs.AI
Abstract: We present a formal language with expressions denoting general symbol structures and queries which access information in those structures. A sequence-to-sequence network processing this language learns to encode symbol structures and query them. The learned representation (approximately) shares a simple linearity property with theoretical techniques for performing this task.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.