Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Query Encoding For Complex Query Answering on Knowledge Graphs (2302.13114v3)

Published 25 Feb 2023 in cs.CL and cs.AI

Abstract: Complex Query Answering (CQA) is an important and fundamental task for knowledge graph (KG) reasoning. Query encoding (QE) is proposed as a fast and robust solution to CQA. In the encoding process, most existing QE methods first parse the logical query into an executable computational direct-acyclic graph (DAG), then use neural networks to parameterize the operators, and finally, recursively execute these neuralized operators. However, the parameterization-and-execution paradigm may be potentially over-complicated, as it can be structurally simplified by a single neural network encoder. Meanwhile, sequence encoders, like LSTM and Transformer, proved to be effective for encoding semantic graphs in related tasks. Motivated by this, we propose sequential query encoding (SQE) as an alternative to encode queries for CQA. Instead of parameterizing and executing the computational graph, SQE first uses a search-based algorithm to linearize the computational graph to a sequence of tokens and then uses a sequence encoder to compute its vector representation. Then this vector representation is used as a query embedding to retrieve answers from the embedding space according to similarity scores. Despite its simplicity, SQE demonstrates state-of-the-art neural query encoding performance on FB15k, FB15k-237, and NELL on an extended benchmark including twenty-nine types of in-distribution queries. Further experiment shows that SQE also demonstrates comparable knowledge inference capability on out-of-distribution queries, whose query types are not observed during the training process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Neural methods for logical reasoning over knowledge graphs. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=tgcAoUVHRIB.
  2. Complex query answering with neural link predictors. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=Mos9F9kDwkz.
  3. Query2Particles: Knowledge graph reasoning with particle embeddings. In Findings of the Association for Computational Linguistics: NAACL 2022, pp.  2703–2714, Seattle, United States, July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.207. URL https://aclanthology.org/2022.findings-naacl.207.
  4. Complex query answering on eventuality knowledge graph with implicit logical constraints. CoRR, abs/2305.19068, 2023a. doi: 10.48550/arXiv.2305.19068. URL https://doi.org/10.48550/arXiv.2305.19068.
  5. Knowledge graph reasoning over entities and numerical values. CoRR, abs/2306.01399, 2023b. doi: 10.48550/arXiv.2306.01399. URL https://doi.org/10.48550/arXiv.2306.01399.
  6. Answering complex logical queries on knowledge graphs via query computation tree optimization. CoRR, abs/2212.09567, 2022b. doi: 10.48550/arXiv.2212.09567. URL https://doi.org/10.48550/arXiv.2212.09567.
  7. Freebase: a collaboratively created graph database for structuring human knowledge. In Jason Tsong-Li Wang (ed.), Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pp.  1247–1250. ACM, 2008. doi: 10.1145/1376616.1376746. URL https://doi.org/10.1145/1376616.1376746.
  8. Translating embeddings for modeling multi-relational data. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds.), Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pp.  2787–2795, 2013. URL https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.
  9. Toward an architecture for never-ending language learning. In Maria Fox and David Poole (eds.), Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879.
  10. Fuzzy logic based logical query answering on knowledge graphs. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp.  3939–3948. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/AAAI/article/view/20310.
  11. Probabilistic entity representation model for reasoning over knowledge graphs. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 23440–23451, 2021a. URL https://proceedings.neurips.cc/paper/2021/hash/c4d2ce3f3ebb5393a77c33c0cd95dc93-Abstract.html.
  12. Self-supervised hyperboloid representations from logical queries over knowledge graphs. In Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (eds.), WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pp.  1373–1384. ACM / IW3C2, 2021b. doi: 10.1145/3442381.3449974. URL https://doi.org/10.1145/3442381.3449974.
  13. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL http://arxiv.org/abs/1412.3555.
  14. Improving text-to-sql evaluation methodology. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pp. 351–360. Association for Computational Linguistics, 2018. doi: 10.18653/v1/P18-1033. URL https://aclanthology.org/P18-1033/.
  15. The compositionality papers. Oxford University Press, 2002.
  16. Embedding logical queries on knowledge graphs. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.  2030–2041, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html.
  17. Long short-term memory. Neural Comput., 9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.
  18. Compositionality decomposed: How do neural networks generalise? J. Artif. Intell. Res., 67:757–795, 2020. doi: 10.1613/jair.1.11674. URL https://doi.org/10.1613/jair.1.11674.
  19. Improving deep metric learning with virtual classes and examples mining. In 2022 IEEE International Conference on Image Processing, ICIP 2022, Bordeaux, France, 16-19 October 2022, pp.  2696–2700. IEEE, 2022. doi: 10.1109/ICIP46576.2022.9897618. URL https://doi.org/10.1109/ICIP46576.2022.9897618.
  20. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 1988–1997. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.215. URL https://doi.org/10.1109/CVPR.2017.215.
  21. Measuring compositional generalization: A comprehensive method on realistic data. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=SygcCnNKwr.
  22. COGS: A compositional generalization challenge based on semantic interpretation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.  9087–9105, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.731. URL https://aclanthology.org/2020.emnlp-main.731.
  23. Neural AMR: Sequence-to-sequence models for parsing and generation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  146–157, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1014. URL https://aclanthology.org/P17-1014.
  24. Answering complex queries in knowledge graphs with bidirectional sequence encoders. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp.  4968–4977. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/16630.
  25. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp.  2879–2888. PMLR, 2018. URL http://proceedings.mlr.press/v80/lake18a.html.
  26. Neural-answering logical queries on knowledge graphs. In Feida Zhu, Beng Chin Ooi, and Chunyan Miao (eds.), KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021, pp.  1087–1097. ACM, 2021. doi: 10.1145/3447548.3467375. URL https://doi.org/10.1145/3447548.3467375.
  27. Mask and reason: Pre-training knowledge graph transformers for complex logical queries. In Aidong Zhang and Huzefa Rangwala (eds.), KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pp.  1120–1130. ACM, 2022. doi: 10.1145/3534678.3539472. URL https://doi.org/10.1145/3534678.3539472.
  28. Rearranging the familiar: Testing compositional generalization in recurrent networks. In Tal Linzen, Grzegorz Chrupala, and Afra Alishahi (eds.), Proceedings of the Workshop: Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels, Belgium, November 1, 2018, pp. 108–114. Association for Computational Linguistics, 2018. doi: 10.18653/v1/w18-5413. URL https://doi.org/10.18653/v1/w18-5413.
  29. Differentiable reasoning on large knowledge bases and natural language. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.  5182–5190. AAAI Press, 2020. URL https://ojs.aaai.org/index.php/AAAI/article/view/5962.
  30. Learning reasoning strategies in end-to-end differentiable proving. In Pascal Hitzler and Md. Kamruzzaman Sarker (eds.), Neuro-Symbolic Artificial Intelligence: The State of the Art, volume 342 of Frontiers in Artificial Intelligence and Applications, pp. 280–293. IOS Press, 2021. doi: 10.3233/FAIA210359. URL https://doi.org/10.3233/FAIA210359.
  31. Making transformers solve compositional tasks. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  3591–3607, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.251. URL https://aclanthology.org/2022.acl-long.251.
  32. Beta embeddings for multi-hop logical reasoning in knowledge graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html.
  33. Query2box: Reasoning over knowledge graphs in vector space using box embeddings. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=BJgr4kSFDS.
  34. SMORE: knowledge graph completion and multi-hop reasoning in massive knowledge graphs. In Aidong Zhang and Huzefa Rangwala (eds.), KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pp.  1472–1482. ACM, 2022. doi: 10.1145/3534678.3539405. URL https://doi.org/10.1145/3534678.3539405.
  35. Investigating pretrained language models for graph-to-text generation. In Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI, pp.  211–227, Online, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.nlp4convai-1.20. URL https://aclanthology.org/2021.nlp4convai-1.20.
  36. End-to-end differentiable proving. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.  3788–3800, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html.
  37. Self-attention with relative position representations. In Marilyn A. Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), pp.  464–468. Association for Computational Linguistics, 2018. doi: 10.18653/v1/n18-2074. URL https://doi.org/10.18653/v1/n18-2074.
  38. Faithful embeddings for knowledge base queries. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/fe74074593f21197b7b7be3c08678616-Abstract.html.
  39. Improved semantic representations from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pp.  1556–1566. The Association for Computer Linguistics, 2015. doi: 10.3115/v1/p15-1150. URL https://doi.org/10.3115/v1/p15-1150.
  40. Observed versus latent features for knowledge base and text inference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and Scott Wen-tau Yih (eds.), Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, CVSC 2015, Beijing, China, July 26-31, 2015, pp.  57–66. Association for Computational Linguistics, 2015. doi: 10.18653/v1/W15-4007. URL https://doi.org/10.18653/v1/W15-4007.
  41. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.  5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
  42. Benchmarking the combinatorial generalizability of complex query answering on knowledge graphs. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html.
  43. Logical message passing networks with one-hop inference on atomic formulas. CoRR, abs/2301.08859, 2023. doi: 10.48550/arXiv.2301.08859. URL https://doi.org/10.48550/arXiv.2301.08859.
  44. Recogs: How incidental details of a logical form overshadow an evaluation of semantic interpretation. CoRR, abs/2303.13716, 2023. doi: 10.48550/arXiv.2303.13716. URL https://doi.org/10.48550/arXiv.2303.13716.
  45. Reasoning over multi-view knowledge graphs. CoRR, abs/2209.13702, 2022. doi: 10.48550/arXiv.2209.13702. URL https://doi.org/10.48550/arXiv.2209.13702.
  46. Neural-symbolic entangled framework for complex query answering. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.  1806–1819. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/0bcfb525c8f8f07ae10a93d0b2a40e00-Paper-Conference.pdf.
  47. Gammae: Gamma embeddings for logical queries on knowledge graphs. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp.  745–760. Association for Computational Linguistics, 2022. URL https://aclanthology.org/2022.emnlp-main.47.
  48. TRANX: A transition-based neural abstract syntax parser for semantic parsing and code generation. In Eduardo Blanco and Wei Lu (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pp.  7–12. Association for Computational Linguistics, 2018. doi: 10.18653/v1/d18-2002. URL https://doi.org/10.18653/v1/d18-2002.
  49. Cone: Cone embeddings for multi-hop reasoning over knowledge graphs. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 19172–19183, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html.
  50. Neural-symbolic models for logical queries on knowledge graphs. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp.  27454–27478. PMLR, 2022. URL https://proceedings.mlr.press/v162/zhu22c.html.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiaxin Bai (30 papers)
  2. Tianshi Zheng (19 papers)
  3. Yangqiu Song (196 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub