Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain (1803.02596v2)
Abstract: We revisit the problem of linear regression under a differential privacy constraint. By consolidating existing pieces in the literature, we clarify the correct dependence of the feature, label and coefficient domains in the optimization error and estimation error, hence revealing the delicate price of differential privacy in statistical estimation and statistical learning. Moreover, we propose simple modifications of two existing DP algorithms: (a) posterior sampling, (b) sufficient statistics perturbation, and show that they can be upgraded into adaptive algorithms that are able to exploit data-dependent quantities and behave nearly optimally for every instance. Extensive experiments are conducted on both simulated data and real data, which conclude that both AdaOPS and AdaSSP outperform the existing techniques on nearly all 36 data sets that we test on.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.