Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain (1803.02596v2)

Published 7 Mar 2018 in stat.ML, cs.LG, and stat.ME

Abstract: We revisit the problem of linear regression under a differential privacy constraint. By consolidating existing pieces in the literature, we clarify the correct dependence of the feature, label and coefficient domains in the optimization error and estimation error, hence revealing the delicate price of differential privacy in statistical estimation and statistical learning. Moreover, we propose simple modifications of two existing DP algorithms: (a) posterior sampling, (b) sufficient statistics perturbation, and show that they can be upgraded into adaptive algorithms that are able to exploit data-dependent quantities and behave nearly optimally for every instance. Extensive experiments are conducted on both simulated data and real data, which conclude that both AdaOPS and AdaSSP outperform the existing techniques on nearly all 36 data sets that we test on.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.