Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Marginal Singularity, and the Benefits of Labels in Covariate-Shift (1803.01833v3)

Published 5 Mar 2018 in stat.ML and cs.LG

Abstract: We present new minimax results that concisely capture the relative benefits of source and target labeled data, under covariate-shift. Namely, we show that the benefits of target labels are controlled by a transfer-exponent $\gamma$ that encodes how singular Q is locally w.r.t. P, and interestingly allows situations where transfer did not seem possible under previous insights. In fact, our new minimax analysis - in terms of $\gamma$ - reveals a continuum of regimes ranging from situations where target labels have little benefit, to regimes where target labels dramatically improve classification. We then show that a recently proposed semi-supervised procedure can be extended to adapt to unknown $\gamma$, and therefore requests labels only when beneficial, while achieving minimax transfer rates.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.