Nesterov's Accelerated Gradient Method for Nonlinear Ill-Posed Problems with a Locally Convex Residual Functional (1803.01757v1)
Abstract: In this paper, we consider Nesterov's Accelerated Gradient method for solving Nonlinear Inverse and Ill-Posed Problems. Known to be a fast gradient-based iterative method for solving well-posed convex optimization problems, this method also leads to promising results for ill-posed problems. Here, we provide a convergence analysis for ill-posed problems of this method based on the assumption of a locally convex residual functional. Furthermore, we demonstrate the usefulness of the method on a number of numerical examples based on a nonlinear diagonal operator and on an inverse problem in auto-convolution.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.