Classification and syzygies of smooth projective varieties with 2-regular structure sheaf (1803.01127v1)
Abstract: The geometric and algebraic properties of smooth projective varieties with 1-regular structure sheaf are well understood, and the complete classification of these varieties is a classical result. The aim of this paper is to study the next case: smooth projective varieties with 2-regular structure sheaf. First, we give a classification of such varieties using adjunction mappings. Next, under suitable conditions, we study the syzygies of section rings of those varieties to understand the structure of the Betti tables, and show a sharp bound for Castelnuovo-Mumford regularity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.