Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Multiple Kernel Learning: Support Identification via Mirror Stratifiability

Published 2 Mar 2018 in math.OC | (1803.00783v1)

Abstract: In statistical machine learning, kernel methods allow to consider infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done by solving an optimization problem depending on a data fit term and a suitable regularizer. In this paper we consider feature maps which are the concatenation of a fixed, possibly large, set of simpler feature maps. The penalty is a sparsity inducing one, promoting solutions depending only on a small subset of the features. The group lasso problem is a special case of this more general setting. We show that one of the most popular optimization algorithms to solve the regularized objective function, the forward-backward splitting method, allows to perform feature selection in a stable manner. In particular, we prove that the set of relevant features is identified by the algorithm after a finite number of iterations if a suitable qualification condition holds. The main tools used in the proofs are the notions of stratification and mirror stratifiability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.