Invariants of deformations of quotient surface singularities (1803.00142v1)
Abstract: We find all $P$-resolutions of quotient surface singularities (especially, tetrahedral, octahedral, and icosahedral singularities) together with their dual graphs, which reproduces Jan Steven's list [Manuscripta Math. 1993] of the numbers of $P$-resolutions of each singularities. We then compute the dimensions and Milnor numbers of the corresponding irreducible components of the reduced base spaces of versal deformations of each singularities. Furthermore we realize Milnor fibers as complements of certain divisors (depending only on the singularities) in rational surfaces via the minimal model program for 3-folds. Then we compare Milnor fibers with minimal symplectic fillings, where the latter are classified by Bhupal and Ono [Nagoya Math. J. 2012]. As an application, we show that there are 6 pairs of entries in the list of Bhupal and Ono [Nagoya Math. J. 2012] such that two entries in each pairs represent diffeomorphic minimal symplectic fillings.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.