Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Partial Identification of Expectations with Interval Data (1802.10490v1)

Published 28 Feb 2018 in econ.EM, stat.AP, and stat.ME

Abstract: A conditional expectation function (CEF) can at best be partially identified when the conditioning variable is interval censored. When the number of bins is small, existing methods often yield minimally informative bounds. We propose three innovations that make meaningful inference possible in interval data contexts. First, we prove novel nonparametric bounds for contexts where the distribution of the censored variable is known. Second, we show that a class of measures that describe the conditional mean across a fixed interval of the conditioning space can often be bounded tightly even when the CEF itself cannot. Third, we show that a constraint on CEF curvature can either tighten bounds or can substitute for the monotonicity assumption often made in interval data applications. We derive analytical bounds that use the first two innovations, and develop a numerical method to calculate bounds under the third. We show the performance of the method in simulations and then present two applications. First, we resolve a known problem in the estimation of mortality as a function of education: because individuals with high school or less are a smaller and thus more negatively selected group over time, estimates of their mortality change are likely to be biased. Our method makes it possible to hold education rank bins constant over time, revealing that current estimates of rising mortality for less educated women are biased upward in some cases by a factor of three. Second, we apply the method to the estimation of intergenerational mobility, where researchers frequently use coarsely measured education data in the many contexts where matched parent-child income data are unavailable. Conventional measures like the rank-rank correlation may be uninformative once interval censoring is taken into account; CEF interval-based measures of mobility are bounded tightly.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube