Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

$L$-functions of ${\mathrm{GL}}(2n):$ $p$-adic properties and non-vanishing of twists (1802.10064v4)

Published 27 Feb 2018 in math.NT

Abstract: The principal aim of this article is to attach and study $p$-adic $L$-functions to cohomological cuspidal automorphic representations $\Pi$ of $\mathrm{GL}(2n)$ over a totally real field $F$ admitting a Shalika model. We use a modular symbol approach, along the global lines of the work of Ash and Ginzburg, but our results are more definitive since we draw heavily upon the methods used in the recent and separate works of all the three authors. By construction our $p$-adic $L$-functions are distributions on the Galois group of the maximal abelian extension of $F$ unramified outside $p\infty$. Moreover we work under a weaker Panchishkine type condition on $\Pi_p$ rather than the full ordinariness condition. Finally, we prove the so-called Manin relations between the $p$-adic $L$-functions at all critical points. This has the striking consequence that, given a unitary $\Pi$ whose standard $L$-function admits at least two critical points, and given a prime $p$ such that $\Pi_p$ is ordinary, the central critical value $L(\tfrac12, \Pi\otimes\chi)$ is non-zero for all except finitely many Dirichlet characters $\chi$ of $p$-power conductor.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube