Morrey spaces related to certain nonnegative potentials and fractional integrals on the Heisenberg groups (1802.08550v1)
Abstract: Let $\mathcal L=-\Delta_{\mathbb Hn}+V$ be a Schr\"odinger operator on the Heisenberg group $\mathbb Hn$, where $\Delta_{\mathbb Hn}$ is the sub-Laplacian on $\mathbb Hn$ and the nonnegative potential $V$ belongs to the reverse H\"older class $RH_s$ with $s\geq Q/2$. Here $Q=2n+2$ is the homogeneous dimension of $\mathbb Hn$. For given $\alpha\in(0,Q)$, the fractional integrals associated to the Schr\"odinger operator $\mathcal L$ is defined by $\mathcal I_{\alpha}={\mathcal L}{-{\alpha}/2}$. In this article, we first introduce the Morrey space $L{p,\kappa}_{\rho,\infty}(\mathbb Hn)$ and weak Morrey space $WL{p,\kappa}_{\rho,\infty}(\mathbb Hn)$ related to the nonnegative potential $V$. Then we establish the boundedness of fractional integrals ${\mathcal L}{-{\alpha}/2}$ on these new spaces. Furthermore, in order to deal with certain extreme cases, we also introduce the spaces $\mathrm{BMO}{\rho,\infty}(\mathbb Hn)$ and $\mathcal{C}{\beta}{\rho,\infty}(\mathbb Hn)$ with exponent $\beta\in(0,1]$.