Morrey spaces for Schrödinger operators with nonnegative potentials, fractional integral operators and the Adams inequality on the Heisenberg groups (1907.03573v1)
Abstract: Let $\mathcal L=-\Delta_{\mathbb Hn}+V$ be a Schr\"odinger operator on the Heisenberg group $\mathbb Hn$, where $\Delta_{\mathbb Hn}$ is the sublaplacian on $\mathbb Hn$ and the nonnegative potential $V$ belongs to the reverse H\"older class $RH_s$ with $s\in[Q/2,\infty)$. Here $Q=2n+2$ is the homogeneous dimension of $\mathbb Hn$. For given $\alpha\in(0,Q)$, the fractional integral operator associated with the Schr\"odinger operator $\mathcal L$ is defined by $\mathcal I_{\alpha}={\mathcal L}{-{\alpha}/2}$. In this article, the author introduces the Morrey space $L{p,\kappa}_{\rho,\infty}(\mathbb Hn)$ and weak Morrey space $WL{p,\kappa}_{\rho,\infty}(\mathbb Hn)$ associated with $\mathcal L$, where $(p,\kappa)\in[1,\infty)\times[0,1)$ and $\rho(\cdot)$ is an auxiliary function related to the nonnegative potential $V$. The relation between the fractional integral operator and the maximal operator on the Heisenberg group is established. From this, the author further obtains the Adams (Morrey-Sobolev) inequality on these new spaces. It is shown that the fractional integral operator $\mathcal I_{\alpha}={\mathcal L}{-{\alpha}/2}$ is bounded from $L{p,\kappa}_{\rho,\infty}(\mathbb Hn)$ to $L{q,\kappa}_{\rho,\infty}(\mathbb Hn)$ with $0<\alpha<Q$, $1<p<Q/{\alpha}$, $0<\kappa<1-{(\alpha p)}/Q$ and $1/q=1/p-{\alpha}/{Q(1-\kappa)}$, and bounded from $L{1,\kappa}_{\rho,\infty}(\mathbb Hn)$ to $WL{q,\kappa}_{\rho,\infty}(\mathbb Hn)$ with $0<\alpha<Q$, $0<\kappa<1-\alpha/Q$ and $1/q=1-{\alpha}/{Q(1-\kappa)}$. Moreover, in order to deal with the extreme cases $\kappa\geq 1-{(\alpha p)}/Q$, the author also introduces the spaces $\mathrm{BMO}{\rho,\infty}(\mathbb Hn)$ and $\mathcal{C}{\beta}{\rho,\infty}(\mathbb Hn)$, $\beta\in(0,1]$ associated with $\mathcal L$.