Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood-Paley and Lusin functions on the Heisenberg groups (1907.09398v1)

Published 16 Jul 2019 in math.CA and math.FA

Abstract: Let $\mathcal L=-\Delta_{\mathbb Hn}+V$ be a Schr\"odinger operator on the Heisenberg group $\mathbb Hn$, where $\Delta_{\mathbb Hn}$ is the sublaplacian on $\mathbb Hn$ and the nonnegative potential $V$ belongs to the reverse H\"older class $RH_q$ with $q\geq Q/2$. Here $Q=2n+2$ is the homogeneous dimension of $\mathbb Hn$. Assume that ${e{-s\mathcal L}}{s>0}$ is the heat semigroup generated by $\mathcal L$. The Littlewood-Paley function $\mathfrak{g}{\mathcal L}$ and the Lusin area integral $\mathcal{S}{\mathcal L}$ associated with the Schr\"odinger operator $\mathcal L$ are defined, respectively, by \begin{equation*} \mathfrak{g}{\mathcal L}(f)(u) := \bigg(\int_0{\infty}\bigg|s\frac{d}{ds} e{-s\mathcal L}f(u) \bigg|2\frac{ds}{s}\bigg){1/2} \end{equation*} and \begin{equation*} \mathcal{S}{\mathcal L}(f)(u) := \bigg(\iint{\Gamma(u)} \bigg|s\frac{d}{ds} e{-s\mathcal L}f(v) \bigg|2 \frac{dvds}{s{Q/2+1}}\bigg){1/2}, \end{equation*} where \begin{equation*} \Gamma(u) := \big{(v,s)\in\mathbb Hn\times(0,\infty): |u{-1}v| < \sqrt{s\,}\big}. \end{equation*} In this paper the author first introduces a class of Morrey spaces associated with the Schr\"odinger operator $\mathcal L$ on $\mathbb Hn$. Then by using some pointwise estimates of the kernels related to the nonnegative potential $V$, the author establishes the boundedness properties of these two operators $\mathfrak{g}{\mathcal L}$ and $\mathcal{S}{\mathcal L}$ acting on the Morrey spaces. It can be shown that the same conclusions also hold for the operators $\mathfrak{g}{\sqrt{\mathcal L}}$ and $\mathcal{S}{\sqrt{\mathcal L}}$ with respect to the Poisson semigroup ${e{-s\sqrt{\mathcal L}}}_{s>0}$.

Summary

We haven't generated a summary for this paper yet.