Papers
Topics
Authors
Recent
2000 character limit reached

Achieving perfect coordination amongst agents in the co-action minority game

Published 17 Feb 2018 in econ.EM and q-fin.EC | (1802.06770v2)

Abstract: We discuss the strategy that rational agents can use to maximize their expected long-term payoff in the co-action minority game. We argue that the agents will try to get into a cyclic state, where each of the $(2N +1)$ agent wins exactly $N$ times in any continuous stretch of $(2N+1)$ days. We propose and analyse a strategy for reaching such a cyclic state quickly, when any direct communication between agents is not allowed, and only the publicly available common information is the record of total number of people choosing the first restaurant in the past. We determine exactly the average time required to reach the periodic state for this strategy. We show that it varies as $(N/\ln 2) [1 + \alpha \cos (2 \pi \log_2 N)$], for large $N$, where the amplitude $\alpha$ of the leading term in the log-periodic oscillations is found be $\frac{8 \pi2}{(\ln 2)2} \exp{(- 2 \pi2/\ln 2)} \approx {\color{blue}7 \times 10{-11}}$.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.