Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework

Published 18 Feb 2018 in cs.LG and stat.ML | (1802.06402v1)

Abstract: Hardware accelerations of deep learning systems have been extensively investigated in industry and academia. The aim of this paper is to achieve ultra-high energy efficiency and performance for hardware implementations of deep neural networks (DNNs). An algorithm-hardware co-optimization framework is developed, which is applicable to different DNN types, sizes, and application scenarios. The algorithm part adopts the general block-circulant matrices to achieve a fine-grained tradeoff between accuracy and compression ratio. It applies to both fully-connected and convolutional layers and contains a mathematically rigorous proof of the effectiveness of the method. The proposed algorithm reduces computational complexity per layer from O($n2$) to O($n\log n$) and storage complexity from O($n2$) to O($n$), both for training and inference. The hardware part consists of highly efficient Field Programmable Gate Array (FPGA)-based implementations using effective reconfiguration, batch processing, deep pipelining, resource re-using, and hierarchical control. Experimental results demonstrate that the proposed framework achieves at least 152X speedup and 71X energy efficiency gain compared with IBM TrueNorth processor under the same test accuracy. It achieves at least 31X energy efficiency gain compared with the reference FPGA-based work.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.