Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Computationally Inferred Genealogical Networks Uncover Long-Term Trends in Assortative Mating (1802.06055v1)

Published 16 Feb 2018 in cs.SI, physics.soc-ph, and q-bio.PE

Abstract: Genealogical networks, also known as family trees or population pedigrees, are commonly studied by genealogists wanting to know about their ancestry, but they also provide a valuable resource for disciplines such as digital demography, genetics, and computational social science. These networks are typically constructed by hand through a very time-consuming process, which requires comparing large numbers of historical records manually. We develop computational methods for automatically inferring large-scale genealogical networks. A comparison with human-constructed networks attests to the accuracy of the proposed methods. To demonstrate the applicability of the inferred large-scale genealogical networks, we present a longitudinal analysis on the mating patterns observed in a network. This analysis shows a consistent tendency of people choosing a spouse with a similar socioeconomic status, a phenomenon known as assortative mating. Interestingly, we do not observe this tendency to consistently decrease (nor increase) over our study period of 150 years.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.