Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Learning Patterns for Detection with Multiscale Scan Statistics (1802.06054v3)

Published 16 Feb 2018 in math.ST, cs.IT, math.IT, stat.ME, and stat.TH

Abstract: This paper addresses detecting anomalous patterns in images, time-series, and tensor data when the location and scale of the pattern is unknown a priori. The multiscale scan statistic convolves the proposed pattern with the image at various scales and returns the maximum of the resulting tensor. Scale corrected multiscale scan statistics apply different standardizations at each scale, and the limiting distribution under the null hypothesis---that the data is only noise---is known for smooth patterns. We consider the problem of simultaneously learning and detecting the anomalous pattern from a dictionary of smooth patterns and a database of many tensors. To this end, we show that the multiscale scan statistic is a subexponential random variable, and prove a chaining lemma for standardized suprema, which may be of independent interest. Then by averaging the statistics over the database of tensors we can learn the pattern and obtain Bernstein-type error bounds. We will also provide a construction of an $\epsilon$-net of the location and scale parameters, providing a computationally tractable approximation with similar error bounds.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.