Generalizing Bottleneck Problems (1802.05861v3)
Abstract: Given a pair of random variables $(X,Y)\sim P_{XY}$ and two convex functions $f_1$ and $f_2$, we introduce two bottleneck functionals as the lower and upper boundaries of the two-dimensional convex set that consists of the pairs $\left(I_{f_1}(W; X), I_{f_2}(W; Y)\right)$, where $I_f$ denotes $f$-information and $W$ varies over the set of all discrete random variables satisfying the Markov condition $W \to X \to Y$. Applying Witsenhausen and Wyner's approach, we provide an algorithm for computing boundaries of this set for $f_1$, $f_2$, and discrete $P_{XY}$. In the binary symmetric case, we fully characterize the set when (i) $f_1(t)=f_2(t)=t\log t$, (ii) $f_1(t)=f_2(t)=t2-1$, and (iii) $f_1$ and $f_2$ are both $\ell\beta$ norm function for $\beta \geq 2$. We then argue that upper and lower boundaries in (i) correspond to Mrs. Gerber's Lemma and its inverse (which we call Mr. Gerber's Lemma), in (ii) correspond to estimation-theoretic variants of Information Bottleneck and Privacy Funnel, and in (iii) correspond to Arimoto Information Bottleneck and Privacy Funnel.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.