Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inferring relevant features: from QFT to PCA

Published 16 Feb 2018 in cs.LG, quant-ph, and stat.ML | (1802.05756v1)

Abstract: In many-body physics, renormalization techniques are used to extract aspects of a statistical or quantum state that are relevant at large scale, or for low energy experiments. Recent works have proposed that these features can be formally identified as those perturbations of the states whose distinguishability most resist coarse-graining. Here, we examine whether this same strategy can be used to identify important features of an unlabeled dataset. This approach indeed results in a technique very similar to kernel PCA (principal component analysis), but with a kernel function that is automatically adapted to the data, or "learned". We test this approach on handwritten digits, and find that the most relevant features are significantly better for classification than those obtained from a simple gaussian kernel.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.