Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vertex nomination: The canonical sampling and the extended spectral nomination schemes (1802.04960v2)

Published 14 Feb 2018 in stat.ML

Abstract: Suppose that one particular block in a stochastic block model is of interest, but block labels are only observed for a few of the vertices in the network. Utilizing a graph realized from the model and the observed block labels, the vertex nomination task is to order the vertices with unobserved block labels into a ranked nomination list with the goal of having an abundance of interesting vertices near the top of the list. There are vertex nomination schemes in the literature, including the optimally precise canonical nomination scheme~$\mathcal{L}C$ and the consistent spectral partitioning nomination scheme~$\mathcal{L}P$. While the canonical nomination scheme $\mathcal{L}C$ is provably optimally precise, it is computationally intractable, being impractical to implement even on modestly sized graphs. With this in mind, an approximation of the canonical scheme---denoted the {\it canonical sampling nomination scheme} $\mathcal{L}{CS}$---is introduced; $\mathcal{L}{CS}$ relies on a scalable, Markov chain Monte Carlo-based approximation of $\mathcal{L}{C}$, and converges to $\mathcal{L}{C}$ as the amount of sampling goes to infinity. The spectral partitioning nomination scheme is also extended to the {\it extended spectral partitioning nomination scheme}, $\mathcal{L}{EP}$, which introduces a novel semisupervised clustering framework to improve upon the precision of $\mathcal{L}P$. Real-data and simulation experiments are employed to illustrate the precision of these vertex nomination schemes, as well as their empirical computational complexity. Keywords: vertex nomination, Markov chain Monte Carlo, spectral partitioning, Mclust MSC[2010]: 60J22, 65C40, 62H30, 62H25

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.