Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Ultrahigh-dimensional Robust and Efficient Sparse Regression using Non-Concave Penalized Density Power Divergence (1802.04906v5)

Published 14 Feb 2018 in stat.ME

Abstract: We propose a sparse regression method based on the non-concave penalized density power divergence loss function which is robust against infinitesimal contamination in very high dimensionality. Present methods of sparse and robust regression are based on $\ell_1$-penalization, and their theoretical properties are not well-investigated. In contrast, we use a general class of folded concave penalties that ensure sparse recovery and consistent estimation of regression coefficients. We propose an alternating algorithm based on the Concave-Convex procedure to obtain our estimate, and demonstrate its robustness properties using influence function analysis. Under some conditions on the fixed design matrix and penalty function, we prove that this estimator possesses large-sample oracle properties in an ultrahigh-dimensional regime. The performance and effectiveness of our proposed method for parameter estimation and prediction compared to state-of-the-art are demonstrated through simulation studies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube