Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
26 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
73 tokens/sec
GPT OSS 120B via Groq Premium
485 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach (1802.04741v1)

Published 13 Feb 2018 in cs.IT, cs.LG, cs.NE, and math.IT

Abstract: We present a novel framework for applying deep neural networks (DNN) to soft decoding of linear codes at arbitrary block lengths. Unlike other approaches, our framework allows unconstrained DNN design, enabling the free application of powerful designs that were developed in other contexts. Our method is robust to overfitting that inhibits many competing methods, which follows from the exponentially large number of codewords required for their training. We achieve this by transforming the channel output before feeding it to the network, extracting only the syndrome of the hard decisions and the channel output reliabilities. We prove analytically that this approach does not involve any intrinsic performance penalty, and guarantees the generalization of performance obtained during training. Our best results are obtained using a recurrent neural network (RNN) architecture combined with simple preprocessing by permutation. We provide simulation results that demonstrate performance that sometimes approaches that of the ordered statistics decoding (OSD) algorithm.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.