Papers
Topics
Authors
Recent
2000 character limit reached

When and when not to use optimal model averaging

Published 13 Feb 2018 in stat.ME | (1802.04589v3)

Abstract: Traditionally model averaging has been viewed as an alternative to model selection with the ultimate goal to incorporate the uncertainty associated with the model selection process in standard errors and confidence intervals by using a weighted combination of candidate models. In recent years, a new class of model averaging estimators has emerged in the literature, suggesting to combine models such that the squared risk, or other risk functions, are minimized. We argue that, contrary to popular belief, these estimators do not necessarily address the challenges induced by model selection uncertainty, but should be regarded as attractive complements for the machine learning and forecasting literature, as well as tools to identify causal parameters. We illustrate our point by means of several targeted simulation studies.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.