Directional differentiability for elliptic quasi-variational inequalities of obstacle type (1802.03564v2)
Abstract: The directional differentiability of the solution map of obstacle type quasi-variational inequalities (QVIs) with respect to perturbations on the forcing term is studied. The classical result of Mignot is then extended to the quasi-variational case under assumptions that allow multiple solutions of the QVI. The proof involves selection procedures for the solution set and represents the directional derivative as the limit of a monotonic sequence of directional derivatives associated to specific variational inequalities. Additionally, estimates on the coincidence set and several simplifications under higher regularity are studied. The theory is illustrated by a detailed study of an application to thermoforming comprising of modelling, analysis and some numerical experiments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.