Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Self-stabilizing processes (1802.02543v2)

Published 7 Feb 2018 in math.PR

Abstract: We construct self-stabilizing' processes {Z(t), t $\in [t_0,t_1)$}. These are random processes which whenlocalized', that is scaled around t to a fine limit, have the distribution of an $\alpha$(Z(t))-stable process, where $\alpha$ is some given function on R. Thus the stability index at t depends on the value of the process at t. Here we address the case where $\alpha$: R $\to$ (0,1). We first construct deterministic functions which satisfy a kind of autoregressive property involving sums over a plane point set $\Pi$. Taking $\Pi$ to be a Poisson point process then defines a random pure jump process, which we show has the desired localized distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube