Papers
Topics
Authors
Recent
Search
2000 character limit reached

Near-Optimal Coresets of Kernel Density Estimates

Published 6 Feb 2018 in cs.LG, cs.CG, and stat.ML | (1802.01751v5)

Abstract: We construct near-optimal coresets for kernel density estimates for points in $\mathbb{R}d$ when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size $O(\sqrt{d}/\varepsilon\cdot \sqrt{\log 1/\varepsilon} )$, and we show a near-matching lower bound of size $\Omega(\min{\sqrt{d}/\varepsilon, 1/\varepsilon2})$. When $d\geq 1/\varepsilon2$, it is known that the size of coreset can be $O(1/\varepsilon2)$. The upper bound is a polynomial-in-$(1/\varepsilon)$ improvement when $d \in [3,1/\varepsilon2)$ and the lower bound is the first known lower bound to depend on $d$ for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide-variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.

Citations (70)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.