Non-universality of the adiabatic chiral magnetic effect in a clean Weyl semimetal slab (1802.00856v1)
Abstract: The adiabatic chiral magnetic effect (CME) is a phenomenon by which a slowly oscillating magnetic field applied to a conducting medium induces an electric current in the instantaneous direction of the field. Here we theoretically investigate the effect in a ballistic Weyl semimetal sample having the geometry of a slab. We discuss why in a general situation the bulk and the boundary contributions towards the CME are comparable. We show, however, that under certain conditions the adiabatic CME is dominated by the Fermi arc states at the boundary. We find that despite the topologically protected nature of the Fermi arcs, their contribution to the CME is neither related to any topological invariant nor can generally be calculated within the bulk low-energy effective theory framework. For certain types of boundary, however, the Fermi arcs contribution to the CME can be found from the effective low energy Weyl Hamiltonian and the scattering phase characterising the collision of a Weyl excitation with the boundary.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.