Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation
Abstract: We consider a nonlinear, free boundary fluid-structure interaction model in a bounded domain. The viscous incompressible fluid interacts with a nonlinear elastic body on the common boundary via the velocity and stress matching conditions. The motion of the fluid is governed by incompressible Navier-Stokes equations while the displacement of elastic structure is determined by a nonlinear elastodynamic system with boundary dissipation. The boundary dissipation is inserted in the velocity matching condition. We prove the global existence of the smooth solutions for small initial data and obtain the exponential decay of the energy of this system as well.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.