Approximate Message Passing for Underdetermined Audio Source Separation (1802.00380v1)
Abstract: Approximate message passing (AMP) algorithms have shown great promise in sparse signal reconstruction due to their low computational requirements and fast convergence to an exact solution. Moreover, they provide a probabilistic framework that is often more intuitive than alternatives such as convex optimisation. In this paper, AMP is used for audio source separation from underdetermined instantaneous mixtures. In the time-frequency domain, it is typical to assume a priori that the sources are sparse, so we solve the corresponding sparse linear inverse problem using AMP. We present a block-based approach that uses AMP to process multiple time-frequency points simultaneously. Two algorithms known as AMP and vector AMP (VAMP) are evaluated in particular. Results show that they are promising in terms of artefact suppression.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.