Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimates for spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace--Beltrami operator (1801.10108v1)

Published 30 Jan 2018 in stat.ML, math.AP, math.DG, and math.PR

Abstract: We study the convergence of the graph Laplacian of a random geometric graph generated by an i.i.d. sample from a $m$-dimensional submanifold $M$ in $Rd$ as the sample size $n$ increases and the neighborhood size $h$ tends to zero. We show that eigenvalues and eigenvectors of the graph Laplacian converge with a rate of $O\Big(\big(\frac{\log n}{n}\big)\frac{1}{2m}\Big)$ to the eigenvalues and eigenfunctions of the weighted Laplace-Beltrami operator of $M$. No information on the submanifold $M$ is needed in the construction of the graph or the "out-of-sample extension" of the eigenvectors. Of independent interest is a generalization of the rate of convergence of empirical measures on submanifolds in $Rd$ in infinity transportation distance.

Citations (151)

Summary

We haven't generated a summary for this paper yet.