Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A kernel-based analysis of Laplacian Eigenmaps (2402.16481v1)

Published 26 Feb 2024 in math.ST, math.PR, math.SP, stat.ML, and stat.TH

Abstract: Given i.i.d. observations uniformly distributed on a closed manifold $\mathcal{M}\subseteq \mathbb{R}p$, we study the spectral properties of the associated empirical graph Laplacian based on a Gaussian kernel. Our main results are non-asymptotic error bounds, showing that the eigenvalues and eigenspaces of the empirical graph Laplacian are close to the eigenvalues and eigenspaces of the Laplace-Beltrami operator of $\mathcal{M}$. In our analysis, we connect the empirical graph Laplacian to kernel principal component analysis, and consider the heat kernel of $\mathcal{M}$ as reproducing kernel feature map. This leads to novel points of view and allows to leverage results for empirical covariance operators in infinite dimensions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. F. Bach. Information theory with kernel methods. IEEE Trans. Inform. Theory, 69(2):752–775, 2023.
  2. Mathematics of data science. Book in preparation.
  3. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373–1396, 2003.
  4. M. Belkin and P. Niyogi. Convergence of laplacian eigenmaps. In Neural Information Processing Systems, 2006.
  5. M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. System Sci., 74(8):1289–1308, 2008.
  6. R. Bhatia. Matrix analysis. Springer-Verlag, New York, 1997.
  7. G. Blanchard and J.-B. Fermanian. Nonasymptotic one- and two-sample tests in high dimension with unknown covariance structure. In Foundations of modern statistics, volume 425 of Springer Proc. Math. Stat., pages 121–162. Springer, Cham, [2023] ©2023.
  8. Concentration inequalities: a nonasymptotic theory of independence. Oxford University Press, Oxford, 2013.
  9. A graph discretization of the Laplace-Beltrami operator. J. Spectr. Theory, 4(4):675–714, 2014.
  10. J. Calder and N. García Trillos. Improved spectral convergence rates for graph Laplacians on ε𝜀\varepsilonitalic_ε-graphs and k𝑘kitalic_k-NN graphs. Appl. Comput. Harmon. Anal., 60:123–175, 2022.
  11. F. Chatelin. Spectral approximation of linear operators. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
  12. I. Chavel. Eigenvalues in Riemannian geometry. Academic Press, Inc., Orlando, FL, 1984.
  13. X. Cheng and N. Wu. Eigen-convergence of Gaussian kernelized graph Laplacian by manifold heat interpolation. Appl. Comput. Harmon. Anal., 61:132–190, 2022.
  14. F. R. K. Chung. Spectral graph theory. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997.
  15. R. R. Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmon. Anal., 21(1):5–30, 2006.
  16. E. B. Davies. Heat kernels and spectral theory. Cambridge University Press, Cambridge, 1990.
  17. Kernel ridge vs. principal component regression: minimax bounds and the qualification of regularization operators. Electron. J. Stat., 11(1):1022–1047, 2017.
  18. Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator. Found. Comput. Math., 20(4):827–887, 2020.
  19. E. Giné and V. Koltchinskii. Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results. In High dimensional probability, volume 51 of IMS Lecture Notes Monogr. Ser., pages 238–259. Inst. Math. Statist., Beachwood, OH, 2006.
  20. Exponential and moment inequalities for U𝑈Uitalic_U-statistics. In High dimensional probability, II (Seattle, WA, 1999), volume 47 of Progr. Probab., pages 13–38. Birkhäuser Boston, Boston, MA, 2000.
  21. A. Grigor’yan. Heat kernel and analysis on manifolds. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.
  22. A. Grigor’yan. Estimates of heat kernels on Riemannian manifolds, page 140–225. London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.
  23. T. Hsing and R. Eubank. Theoretical foundations of functional data analysis, with an introduction to linear operators. John Wiley & Sons, Ltd., Chichester, 2015.
  24. A note on the prediction error of principal component regression in high dimensions. Theory Probab. Math. Statist., 109:37–53, 2023.
  25. I. C. F. Ipsen. Relative perturbation results for matrix eigenvalues and singular values. In Acta numerica, 1998, volume 7 of Acta Numer., pages 151–201. Cambridge Univ. Press, Cambridge, 1998.
  26. M. Jirak and M. Wahl. Quantitative limit theorems and bootstrap for empirical spectral projectors. Available at https://arxiv.org/abs/2208.12871.
  27. M. Jirak and M. Wahl. Perturbation bounds for eigenspaces under a relative gap condition. Proc. Amer. Math. Soc., 148(2):479–494, 2020.
  28. M. Jirak and M. Wahl. Relative perturbation bounds with applications to empirical covariance operators. Adv. Math., 412:Paper No. 108808, 59 pp, 2023.
  29. I. M. Johnstone and D. Paul. PCA in high dimensions: An orientation. Proceedings of the IEEE, 106(8):1277–1292, 2018.
  30. I. Koch. Analysis of multivariate and high-dimensional data. Cambridge University Press, New York, 2014.
  31. V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators. Bernoulli, 6(1):113–167, 2000.
  32. Efficient estimation of linear functionals of principal components. Ann. Statist., 48(1):464–490, 2020.
  33. V. Koltchinskii and K. Lounici. Concentration inequalities and moment bounds for sample covariance operators. Bernoulli, 23(1):110–133, 2017.
  34. S. Minakshisundaram and Å. Pleijel. Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canad. J. Math., 1:242–256, 1949.
  35. M. Reiss and M. Wahl. Nonasymptotic upper bounds for the reconstruction error of PCA. Ann. Statist., 48(2):1098–1123, 2020.
  36. Introduction to differential geometry. Springer Spektrum, Wiesbaden, 2022.
  37. On learning with integral operators. J. Mach. Learn. Res., 11:905–934, 2010.
  38. S. Rosenberg. The Laplacian on a Riemannian manifold. Cambridge University Press, Cambridge, 1997.
  39. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.
  40. Z. Shi. Convergence of laplacian spectra from random samples. Available at https://arxiv.org/abs/1507.00151.
  41. A. Singer. From graph to manifold Laplacian: the convergence rate. Appl. Comput. Harmon. Anal., 21(1):128–134, 2006.
  42. I. Steinwart and A. Christmann. Support vector machines. Springer, New York, 2008.
  43. J. A. Tropp. An Introduction to Matrix Concentration Inequalities. 2015.
  44. U. von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395–416, 2007.
  45. Consistency of spectral clustering. Ann. Statist., 36(2):555–586, 2008.
  46. V. Q. Vu and J. Lei. Minimax sparse principal subspace estimation in high dimensions. Ann. Statist., 41(6):2905–2947, 2013.
  47. M. Wahl. On the perturbation series for eigenvalues and eigenprojections. Available at https://arxiv.org/abs/1910.08460.
  48. M. J. Wainwright. High-dimensional statistics. Cambridge University Press, Cambridge, 2019.

Summary

We haven't generated a summary for this paper yet.