2000 character limit reached
Spectral Convergence Rate of Graph Laplacian (1510.08110v1)
Published 27 Oct 2015 in stat.ML
Abstract: Laplacian Eigenvectors of the graph constructed from a data set are used in many spectral manifold learning algorithms such as diffusion maps and spectral clustering. Given a graph constructed from a random sample of a $d$-dimensional compact submanifold $M$ in $\mathbb{R}D$, we establish the spectral convergence rate of the graph Laplacian. It implies the consistency of the spectral clustering algorithm via a standard perturbation argument. A simple numerical study indicates the necessity of a denoising step before applying spectral algorithms.