Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Convergence Rate of Graph Laplacian (1510.08110v1)

Published 27 Oct 2015 in stat.ML

Abstract: Laplacian Eigenvectors of the graph constructed from a data set are used in many spectral manifold learning algorithms such as diffusion maps and spectral clustering. Given a graph constructed from a random sample of a $d$-dimensional compact submanifold $M$ in $\mathbb{R}D$, we establish the spectral convergence rate of the graph Laplacian. It implies the consistency of the spectral clustering algorithm via a standard perturbation argument. A simple numerical study indicates the necessity of a denoising step before applying spectral algorithms.

Citations (23)

Summary

We haven't generated a summary for this paper yet.