Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 31 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Statistical Equilibrium in Quantum Gravity: Gibbs states in Group Field Theory (1801.09964v2)

Published 30 Jan 2018 in gr-qc, cond-mat.stat-mech, and hep-th

Abstract: Gibbs states are known to play a crucial role in the statistical description of a system with a large number of degrees of freedom. They are expected to be vital also in a quantum gravitational system with many underlying fundamental discrete degrees of freedom. However, due to the absence of well-defined concepts of time and energy in background independent settings, formulating statistical equilibrium in such cases is an open issue. This is even more so in a quantum gravity context that is not based on any of the usual spacetime structures, but on non-spatiotemporal degrees of freedom. In this paper, after having clarified general notions of statistical equilibrium, on which two different construction procedures for Gibbs states can be based, we focus on the group field theory formalism for quantum gravity, whose technical features prove advantageous to the task. We use the operator formulation of group field theory to define its statistical mechanical framework, based on which we construct three concrete examples of Gibbs states. The first is a Gibbs state with respect to a geometric volume operator, which is shown to support condensation to a low-spin phase. This state is not based on a pre-defined symmetry of the system and its construction is via Jaynes' entropy maximisation principle. The second are Gibbs states encoding structural equilibrium with respect to internal translations on the GFT base manifold, and defined via the KMS condition. The third are Gibbs states encoding relational equilibrium with respect to a clock Hamiltonian, obtained by deparametrization with respect to coupled scalar matter fields.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.