Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

An iterative support shrinking algorithm for $\ell_{p}$-$\ell_{q}$ minimization (1801.09867v1)

Published 30 Jan 2018 in math.NA

Abstract: We present an iterative support shrinking algorithm for $\ell_{p}$-$\ell_{q}$ minimization~($0 <p < 1 \leq q < \infty $). This algorithm guarantees the nonexpensiveness of the signal support set and can be easily implemented after being proximally linearized. The subproblem can be very efficiently solved due to its convexity and reducing size along iteration. We prove that the iterates of the algorithm globally converge to a stationary point of the $\ell_{p}$-$\ell_{q}$ objective function. In addition, we show a lower bound theory for the iteration sequence, which is more practical than the lower bound results for local minimizers in the literature.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.