Papers
Topics
Authors
Recent
2000 character limit reached

Uniqueness of the blow-up at isolated singularities for the Alt-Caffarelli functional (1801.09276v2)

Published 28 Jan 2018 in math.AP

Abstract: In this paper we prove uniqueness of blow-ups and $C{1,\log}$-regularity for the free-boundary of minimizers of the Alt-Caffarelli functional at points where one blow-up has an isolated singularity. We do this by establishing a (log-)epiperimetric inequality for the Weiss energy for traces close to that of a cone with isolated singularity, whose free-boundary is graphical and smooth over that of the cone in the sphere. With additional assumptions on the cone, we can prove a classical epiperimetric inequality which can be applied to deduce a $C{1,\alpha}$ regularity result. We also show that these additional assumptions are satisfied by the De Silva-Jerison-type cones, which are the only known examples of minimizing cones with isolated singularity. Our approach draws a connection between epiperimetric inequalities and the \L ojasiewicz inequality, and, to our knowledge, provides the first regularity result at singular points in the one-phase Bernoulli problem.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.