The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type (1801.08740v2)
Abstract: Consider the Laguerre polynomials and deform them by the introduction in the measure of an exponential singularity at zero. In [Chen Y., Its A., J. Approx. Theory 162 (2010), 270-297, arXiv:0808.3590] the authors proved that this deformation can be described by systems of differential/difference equations for the corresponding recursion coefficients and that these equations, ultimately, are equivalent to the Painlev\'e III equation and its B\"acklund/Schlesinger transformations. Here we prove that an analogue result holds for some kind of semiclassical matrix-valued orthogonal polynomials of Laguerre type.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.