Papers
Topics
Authors
Recent
2000 character limit reached

Information gain ratio correction: Improving prediction with more balanced decision tree splits (1801.08310v1)

Published 25 Jan 2018 in stat.ML

Abstract: Decision trees algorithms use a gain function to select the best split during the tree's induction. This function is crucial to obtain trees with high predictive accuracy. Some gain functions can suffer from a bias when it compares splits of different arities. Quinlan proposed a gain ratio in C4.5's information gain function to fix this bias. In this paper, we present an updated version of the gain ratio that performs better as it tries to fix the gain ratio's bias for unbalanced trees and some splits with low predictive interest.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.