Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Nonparametric Hawkes Processes: Online Estimation and Generalization Bounds (1801.08273v1)

Published 25 Jan 2018 in stat.ML

Abstract: In this paper, we design a nonparametric online algorithm for estimating the triggering functions of multivariate Hawkes processes. Unlike parametric estimation, where evolutionary dynamics can be exploited for fast computation of the gradient, and unlike typical function learning, where representer theorem is readily applicable upon proper regularization of the objective function, nonparametric estimation faces the challenges of (i) inefficient evaluation of the gradient, (ii) lack of representer theorem, and (iii) computationally expensive projection necessary to guarantee positivity of the triggering functions. In this paper, we offer solutions to the above challenges, and design an online estimation algorithm named NPOLE-MHP that outputs estimations with a $\mathcal{O}(1/T)$ regret, and a $\mathcal{O}(1/T)$ stability. Furthermore, we design an algorithm, NPOLE-MMHP, for estimation of multivariate marked Hawkes processes. We test the performance of NPOLE-MHP on various synthetic and real datasets, and demonstrate, under different evaluation metrics, that NPOLE-MHP performs as good as the optimal maximum likelihood estimation (MLE), while having a run time as little as parametric online algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube