Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Comparison Training for Computer Chinese Chess (1801.07411v1)

Published 23 Jan 2018 in cs.AI

Abstract: This paper describes the application of comparison training (CT) for automatic feature weight tuning, with the final objective of improving the evaluation functions used in Chinese chess programs. First, we propose an n-tuple network to extract features, since n-tuple networks require very little expert knowledge through its large numbers of features, while simulta-neously allowing easy access. Second, we propose a novel evalua-tion method that incorporates tapered eval into CT. Experiments show that with the same features and the same Chinese chess program, the automatically tuned comparison training feature weights achieved a win rate of 86.58% against the weights that were hand-tuned. The above trained version was then improved by adding additional features, most importantly n-tuple features. This improved version achieved a win rate of 81.65% against the trained version without additional features.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.