Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Smoke: Fine-grained Lineage at Interactive Speed (1801.07237v1)

Published 22 Jan 2018 in cs.DB

Abstract: Data lineage describes the relationship between individual input and output data items of a workflow, and has served as an integral ingredient for both traditional (e.g., debugging, auditing, data integration, and security) and emergent (e.g., interactive visualizations, iterative analytics, explanations, and cleaning) applications. The core, long-standing problem that lineage systems need to address---and the main focus of this paper---is to capture the relationships between input and output data items across a workflow with the goal to streamline queries over lineage. Unfortunately, current lineage systems either incur high lineage capture overheads, or lineage query processing costs, or both. As a result, applications, that in principle can express their logic declaratively in lineage terms, resort to hand-tuned implementations. To this end, we introduce Smoke, an in-memory database engine that neither lineage capture overhead nor lineage query processing needs to be compromised. To do so, Smoke introduces tight integration of the lineage capture logic into physical database operators; efficient, write-optimized lineage representations for storage; and optimizations when future lineage queries are known up-front. Our experiments on microbenchmarks and realistic workloads show that Smoke reduces the lineage capture overhead and streamlines lineage queries by multiple orders of magnitude compared to state-of-the-art alternatives. Our experiments on real-world applications highlight that Smoke can meet the latency requirements of interactive visualizations (e.g., <150ms) and outperform hand-written implementations of data profiling primitives.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube