What Does a TextCNN Learn? (1801.06287v1)
Abstract: TextCNN, the convolutional neural network for text, is a useful deep learning algorithm for sentence classification tasks such as sentiment analysis and question classification. However, neural networks have long been known as black boxes because interpreting them is a challenging task. Researchers have developed several tools to understand a CNN for image classification by deep visualization, but research about deep TextCNNs is still insufficient. In this paper, we are trying to understand what a TextCNN learns on two classical NLP datasets. Our work focuses on functions of different convolutional kernels and correlations between convolutional kernels.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.