Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Linear recurrence sequences and the duality defect conjecture (1801.05556v2)

Published 17 Jan 2018 in math.AG

Abstract: It is conjectured that the dual variety of every smooth nonlinear subvariety of dimension $> \frac{2N}{3}$ in projective $N$-space is a hypersurface, an expectation known as the duality defect conjecture. This would follow from the truth of Hartshorne's complete intersection conjecture but nevertheless remains open for the case of subvarieties of codimension $> 2$. A combinatorial approach to proving the conjecture in the codimension $2$ case was developed by Holme, and following this approach Oaland devised an algorithm for proving the conjecture in the codimension $3$ case for particular $N$. This combinatorial approach gives a potential method of proving the duality defect conjecture in many of the cases by studying the positivity of certain homogeneous integer linear recurrence sequences. We give a generalization of the algorithm of Oaland to the higher codimension cases, obtaining with this bounds the degrees of counterexamples would have to satisfy, and using the relationship with recurrence sequences we prove that the conjecture holds in the codimension $3$ case when $N$ is odd.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.