Papers
Topics
Authors
Recent
2000 character limit reached

A partial order on Motzkin paths (1801.04809v4)

Published 15 Jan 2018 in math.CO

Abstract: The Tamari lattice, defined on Catalan objects such as binary trees and Dyck paths, is a well-studied poset in combinatorics. It is thus natural to try to extend it to other families of lattice paths. In this article, we fathom such a possibility by defining and studying an analogy of the Tamari lattice on Motzkin paths. While our generalization is not a lattice, each of its connected components is isomorphic to an interval in the classical Tamari lattice. With this structural result, we proceed to the enumeration of components and intervals in the poset of Motzkin paths we defined. We also extend the structural and enumerative results to Schr\"oder paths. We conclude by a discussion on the relation between our work and that of Baril and Pallo (2014).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.