Papers
Topics
Authors
Recent
2000 character limit reached

Cohomological Hall algebra of Higgs sheaves on a curve

Published 10 Jan 2018 in math.AG and math.RT | (1801.03482v3)

Abstract: We define the cohomological Hall algebra ${AHA}{Higgs(X)}$ of the ($2$-dimensional) Calabi-Yau category of Higgs sheaves on a smooth projective curve $X$, as well as its nilpotent and semistable variants, in the context of an arbitrary oriented Borel-Moore homology theory. In the case of usual Borel-Moore homology, ${AHA}{Higgs(X)}$ is a module over the (universal) cohomology ring $\mathbb{H}$ of the stacks of coherent sheaves on $X$ . We show that it is a torsion-free $\mathbb{H}$-module, and we provide an explicit collection of generators (the collection of fundamental classes $[Coh_{r,d}]$ of the zero-sections of the map $Higgs_{r,d} \to Coh_{r,d}$, for $r \geq 0, d \in Z$).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.