Volumes and Siegel-Veech constants of $\mathcal{H}(2g-2)$ and Hodge integrals (1801.01744v2)
Abstract: In the 80's H. Masur and W. Veech defined two numerical invariants of strata of abelian differentials: the volume and the Siegel-Veech constant. Based on numerical experiments, A. Eskin and A. Zorich proposed a series of conjectures for the large genus asymptotics of these invariants. By a careful analysis of the asymptotic behavior of quasi-modular forms, D. Chen, M. Moeller, and D. Zagier proved this conjecture for strata of differentials with simple zeros. Here, we prove that the conjecture holds for the other extreme case, i.e. for strata of differentials with a unique zero. Our main ingredient is the expression of the numerical invariants of these strata in terms of Hodge integrals on moduli spaces of curves.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.