Papers
Topics
Authors
Recent
2000 character limit reached

Arboreal Cantor actions (1801.01440v2)

Published 4 Jan 2018 in math.DS and math.NT

Abstract: In this paper, we consider minimal equicontinuous actions of discrete countably generated groups on Cantor sets, obtained from the arboreal representations of absolute Galois groups of fields. In particular, we study the asymptotic discriminant of these actions. The asymptotic discriminant is an invariant obtained by restricting the action to a sequence of nested clopen sets, and studying the isotropies of the enveloping group actions in such restricted systems. An enveloping (Ellis) group of such an action is a profinite group. A large class of actions of profinite groups on Cantor sets is given by arboreal representations of absolute Galois groups of fields. We show how to associate to an arboreal representation an action of a discrete group, and give examples of arboreal representations with stable and wild asymptotic discriminant.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.